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ABSTRACT

An analysis of steady state operation of a vertically
oriented, variable conductance heat pipe is presented. The
effects of binary mass diffusion, axial pipe wall conduction,
and gravitational effects, caused by the difference in
molecular weight of the non-condensible gas and the working
fluid are incorporated. BAnalytical expressions for the con-
servation of mass, momentum, and energy are combined along
with equations of state to describe steady state operation

of the heat pipe. These expressions are combined to form

a system of tnree differential equations with three unknowns;
working fluid vapor velocity, mass fraction, and temperature.
These equations are nondimensionalized and an iteration scheme

for numerical solution of the equations is presented.
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R = universal gas constant

Sa = working fluid vapor saturation density as a function

of temperature

T = absolute temperature
\Y = velocity
X = axial distance

Greek Symbols

n = nondimensional distance

9 = nondimensional temperature

A = nondimensional friction factor
u = viscosity

o) = density

T = wviscous shear forces

X = mole fraction

w = mass fraction

Supersc.ipts

* = nondimensional term

Subscripts

a = working fluid
b = noncondensible gas
c = condenser

= evaporator

= initial value




" e F o wmm—— = v e = o e

C o e s .

¢ VR AT LT

L ST

AT TS T TR

PN

-

R

e 4 + Vel o) S & Bl v Sl kA S A N - i g FUAN sl gt o b aedd A R

I. INTRODUCTION

A. BACKGROUND

A heat pipe is a closed, evacuated chamber that has the
inside walls lined with a wick structure, saturatea /ith a
volatile working fluid. The steady state operation inv 1lves
vapor heat transfer and capillary action. A comprehensive
coverage of the theory and operation of heat pipes can be
found in Dunn and Reay [Ref. 1]. Briefly, the operation of
a vertically oriented heat pipe will be discussed. The heat
pipe has three sections: an evaporator section, an adiabatic
section, and a condenser sc¢.-:ion. The heat pipe with the
three sections marked is shown in Figure 1.1. The lower evapora-
tor end of the heat pipe is heated, causing the working liguid
in the wick to vaporize. This phase change caﬁses the working
fluid to absorb latent heat and the vapor pressure increases
in the evaporator end. The working fluid is drawn away from
the wick, causing the liquid pressure to decrease. The vapor
moves to the cooler condenser where it is condensed and the
working fluid gives up its latent heat. The condensate is
deposited on the wick which causes the liquid level to in-
crease thus increasing the liquid pressure. Capillary forces
take the higher pressure liquid from the condenser to the lower
pressure liquid end of the evaporator. The capillary forces

are assisted by gravitational forces when the heat pipe is
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vertically oriented as shown in Figure 1.1. It is important to
note that for heat pipes the evaporator position is not re-
stricted, but since the experimental data and numerical model
use a vertically oriented heat pipe, this orientation will be
used throughout this thesis.

The great advantage of heat pipes is that the vaporization
and condensation process allow for high heat transfer rates

with small temperature differences. Two other advantages are

that the basic heat pipe has no moving parts and can be used

in many geometrical configurations. The heat pipe has limi-

tations and again, a comprehensive presentation of these limi-

-

tations can be found in Dunn and Reay ([Ref. 1]. Briefly, the

T

five heat pipe limitations are as follows:

(a) The viscous limit is basically the low temperature limit.
This would be the minimum temperature for the heat

pipe to begin operation. Generally, the viscous limit
is only important during start up of some heat pipes,
i.e., liquid metal pipes.

(b) The sonic limit describes the limit of the vapor flow
velocity at the heat pipe evaporator exit. The re-
sulting choked flow condition limits the axial heat
flux capacity of the heat pipe.

s g

(c) The entrainment limitation is due to the removing of
the liquid before it can return to the evaporator by

vapor flowing at high velocity.

v

(d) The wicking or capillary limit reflects the fact that
each combination of wick and fluid has a maximum
capillary head. As stated earlier, the capillary head
must increase with the liquid and vapor pressure drops

and can do so only up to the maximum capillary head.

(e) The last limit is the boiling limit. If temperatures
in the evaporator get too high the working fluid will
begin to boil within the wick. This will disrupt liquid
flow to the evaporator, causing the heat pipe to stop

working.

11
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These five heat pipe limitations vary in importance, depending

-~ ¥ N vww
e e

on the temperature and corresponding axial heat flux operating ;
point. Since at different temperatures one can encounter
different heat pipe controlling limitations, it is important

to have a basic understanding of all five limitations.

. g’
8 B. VARIABLE CONDUCTANCE HEAT PIPE ,
i 1. Basic Operation :E
El Variable conductance heat pipes are described in detail E:
Ef in Marcus [Ref. 2]. As described in the background section, a iﬁ
;i change in the heat load will automatically change the operating ;f
. temperature and pressure of the heat pipe, given a constant sink .;

o

temperature. This is an undesirable quality for many situations E%

where it is desired to have a stable source temperature under EE

conditions of varying heat load or sink temperatures. An PE

example of this case would be the cooling of sensitive elec- ig

tronic equipment. Basically, a noncondensible gas is introduced &z

into the heat pipe along with the working fluid, making the .:

heat pipe become a passively controlled device. The nonconden- f;

sible gas occupies a certain portion of the condenser section, :§

depending on operating conditions. Increasing operating tempera- !ii

ture in turn increases the vapor pressure of the working fluid lj

which compresses the noncondensible gas into a smaller volume. ii

This provides a greater active condenser area, thus allowing bi

a more stable source temperature than a conventional heat pipe. ' z;

When the operating temperature decreases, working fluid vapor EE

i

i
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P
pressure falls and the noncondensible gas expands, blocking a ;;i
larger portion of the condenser. The result is a passively .i
controlled variable condenser area, which in turn makes a ;?f
more stable source temperature. é;il
2. Vvariable Conductance Heat Pipe Theory t?;
Marcus [Ref. 2] describes a flat front theory and a Zﬁgf
'diffuse front theory' for variable conductance heat pipes. ?;;
Flat front theory assumes the noncondensible gas is in the ;:;:
form of a plug with sharply defined vapor-gas interface which c{é
is perpendicular to the axis of the pipe. Since this model S;?
neglected the axial conduction in the heat pipe wall and diffu- é;i
sion of vapor into the stagnant gas plug, experimental results ?Sf
[Ref. 2] have shown this model to be inaccurate. The early k;f
model of flat front theory provided initial insight into the Qiﬁ
operating characteristics of gas loaded heat pipes. With the f“
incorporation of binary diffusion between the Qorking fluid if;
vapor and the noncondensible gas and axial conduction in the :5;
pipe wall, Marcus' [Ref. 2] 'diffuse front theory' establishes 5?2
a model of gas loaded heat pipes which provides better simi- ;i;
larity between computer program and laboratory results. ;{;
Gravitational effects on the vapor-gas interface are not :1;
included in flat front theory or the 'diffuse front theory.' )
Gravitational effects can greatly distort the axial temperature iﬁf
profile when the working fluid and noncondensible gas have -
significantly different molecular weights. This fact is demon-
strated by experimental results reported by Kelleher [Ref. 3]. hmj
s
;ﬁﬁ
R,
13 e
e

~ e
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Batts [Ref. 4] conducted variable conductance heat pipe experi-
ments using working fluid/noncondensible gas combinations of
methanol/helium and methanol/krypton. Kane [Ref. 5] developed
an analytical model of variable conductance heat pipes which
includes the effects of binary mass diffusion, axial pipe-wall
conduction, and gravitational effects which exist at the vapor-

gas interface region as shown by Batts [Ref. 4] experiments.
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II. FORMULATION OF AN ANALYTICAL MODEL

A. PROBLEM STATEMENT

The purpose of this chapter is to formulate the equations
describing the steady state operation of a vertically oriented,
gas loaded, variable conductance heat pipe. As in Figure 1.1,
the condenser is above the evaporator for this orientation.
This analysis includes the effects of binary mass diffusion,
axial pipe wall conduction, and gravitational effects due to
the difference in molecular weight between the noncondensible

gas and the working fluid.

B. ASSUMPTIONS
The following assumptions are used to develop the system
of equations:

1. Heat, mass and momentum transport processes are treated
as one-dimensional in the axial direction within the
vapor space of a vertically oriented heat pipe.

Kelleher [Ref. 3] shows that in any other orientation,
gravitational effects cause highly three-dimensional
spatial variations when the molecular weights of the
working fluid and noncondensible gas differ substantially.

2. The noncondensible gas acts as a perfect gas. The
mixture of noncondensible gas and working fluid are
treated as thermodynamically independent substances.

3. Because of direct contact between the vapor and the
liquid saturated wick, the working fluid vapor is at
saturation conditions at all times.

4. The thermal resistance of the wick-wall structure, in
the radial direction, is negligible in comparison with
the thermal resistance due to convection outside the
pipe.

15
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C. ANALYSIS

Kane [Ref. 5] presents a proposed solution for this prob-
lem. The following is a significant change to his proposed
solution with modifications being noted as they occur in
this section. Variables with the subscript 'a' apply to the
working fluid and variables with the subscript 'b' apply to
the noncondensible gas.

Utilizing the assumption that the noncondensible gas is

a perfect gas, the equation for noncondensible gas pressure

is:

The principles of mixtures of thermodynamically independent
substances, which are found in Reynolds and Perkins [Ref. 6],

are used to define the total density and the total pressure.

P= Pyt Py (I1.2)

The definition of mass fraction is used to form the equation

for the working fluid vapor mass fraction.

W = la
p

..................
P R



The solution, utilizing the conservation of mass, is
based on a differential element representing a section of
the heat pipe condenser, Figure 2.1. The conservation of

mass of species 'a' for the differential element yields:
p_V_A = (p_V_ + Q-—(p v_)dax)a + ﬁ P_dx
aa dx "aa c a'v '

This equation sets the mass of species 'a' into the control
volume equal to the mass of species 'a' out, including a

term to account for the removal of species 'a' by condensation.
The process of condensation is accounted for by multiplying
the condensation mass flux times the area, defined by the
vapor space perimeter times the length, dx, of the differen-
tial element. After basic algebra, the equation for conser-

vation of mass of species 'a' becomes:

0 = mpP_ + A

a‘v c a§‘pava) :

By using Fick's law of binary diffusion [Ref.7], and solving
for pava' the resulting formula is:

dw

= - 2
PaVa = waPV D 3% -

The final form for the conservation of mass for species 'a‘’

becomes:
. P dw
v d d a
—_ ¢ - —_— = . .
My A Jx (waPV) dx(pD dx) 0 (I1.5)
17
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Since species 'b' is a noncondensible gas, the condensation E";
MO
mass flux of species 'b' equals zero. The resulting equation “%
]
for the conservation of mass for species 'b' is: Q&R
8%
O,
o
d d dwp, a8
& pPV) T PP ) = 0. ~3
iyt

The mass continuity of the mixture is derived by adding L
the conservation of mass of species 'a' with the conservation

of mass of species 'b’'.

. PV a a dma dmb
ma A——(—:- + ’d—i(DV(wa +wb)) - d—}z(pD(—a; + 7‘?’) = 0 .
Because w_ +w, is equal to one, and El-—(m +w, ) = g—(1) = 0
a b q ’ dx ' a b dx '

the final result of the mass continuity of the mixture is:
m - + 9_(QV) = 0 - (IT.6)
dx ) '

Figure 2.2 is a differential element of the vapor space in
the condenser and is used to derive the conservation of linear
momentum equation for the mixture of noncondensible gas and
working fluid vapor. The conservation of linear momentum for

the mixture of noncondensible gas and working fluid vapor is

derived by setting the summation of external forces acting on
the control volume in the x direction equal to the net efflux o

of linear momentum. e

(]
whs
i

> > >
< f V(pV da) N
CS,x
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The summation of external forces acting in the x direction are:

-
) F, = p9A dx - TP dx - dp A, .

These terms represent the force due to gravity acting on the

control volume minus the forces due to wall shear stress and

N VRS S T SO S ST P

v

pressure acting on the control volume. The wall shear stress

W

can be calculated by:

where ) is a dimensionless friction factor. If developed

16

laminar flow is assumed the Darcy friction factor, A = Ra’

could be used with the Reynolds number defined as

p VDv
u

The equation for wall shear stress then becomes:

where py is the viscosity of methanol vapor, V is the velocity
of the vapor and Dv is the diameter of the vapor space. The

terms to represent the net efflux of linear momentum are:

MY

R .
f V(pvaR) = V.m.P.dx + (pv +d(pv) (v+dv))A_ - pV°A
a av C [o]
CS,x
= + .
VamaPde + Acpvdv Acvd(pv)
21
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By setting the summation of external forces in the x direction
equal to the net efflux of linear momentum and combining like
terms, the result is:

ar  _ _4da 2, _ v -
Ix - P9 - gxlevh) A—cvw A D (I1.7)

The above equation represents conservation of linear momentum
for the mixture of noncondensible gas and working fluid vapor.
Kane [Ref. 5] assumes zero velocity for the noncondensible gas
and derives an equation for conservation of linear momentum
of species 'b,' The species 'b' conservation of linear momen-
tum equation is not necessary to derive the model in this
analysis. Since the conservation of linear momentum for the
mixture of the noncondensible gas and working fluid vapor is
the more consistent approach, Equation (II.7) is used through-
out this thesis.

Figure 2.3 is a differential element of the condenser wall
and represents the wick and pipe wall combination as one ele-
ment. The wick-wall combination is treated like a fin and is
used to derive the equation for the conservation of energy.
Heat transfer is represented by the latent heat deposited on
the 'fin' by condensation of the working fluid vapor plus the
heat transfer from Fourier's law of conduction entering the

'fin.'

22

PR
> " * ,-_'..-
Cland PN

”

WA

ol
s

-
»
L]
A

» N
o
o . o Pl

. .
I
v St

St
. i. l‘l /'
.

ot e
(]
5y

2y
0
>

e



(AEAME R A At A A P SN ETRTY R RS R STRTRTRTS i Ria-alie i A e itk AR

L

e .-':j‘ K
A IR

pax | 3

S

X N

l R
} * RS
' h P_(T -T, dx A
. my, heo Podx ——f S ( ) S

dx ;:3

dT
pdx)dx e

_ daT d
Qc +dQc = -KA_ == +

p ax d'—x(“K A

Figure 2.3. Differential Element for Energy Balance

- - - - - ‘
t IR RIS R S g



A 4t

.' l' -" -.' -'

-

o4
'."
LS
Heat transfer out is represented by Fourier's law of conduction Sﬁ
N
A\
leaving the 'fin' plus the energy which is convected away from =
e
the fin. :f'
x}:.-. f
|-f ‘
= +d h (T d i
Qut = % Qc * h Py " Te) dx LB
The equation for conservatior of enercy is derived by setting
heat transfer in equal to heat transfer out of the 'fin.' =
o
2 hp h, P . e
d”T S fg v _ -
3 3 }(T(T Tm) + —kg—— ma = 0 (II.8) e
X p P o
The experimental data from Batts [Ref. 4] is used to t;
correlate this analysis. The working fluid is methanol, Zf{
CH3OH. The working fluid vapor in the heat pipe is in direct P;
contact with the working fluid liquid in the wick and is kﬁ:
25
therefore considered to be a saturated vapor at the local :5{
\'._-:.
temperature of the wick-wall combination. Eubank [Ref. 8] .
tabulates data for the saturation properties of methanol. jf
These tables are used to generate functions of local temperature ;i;
>,
for partial pressure, partial density and heat of vaporization ﬁg
of saturated methanol vapor. é@;
(a) The partial pressure of saturated methanol vapor is a R
NG
function, Fa, of local temperature. -
P, = Fal(T) (I1.9) e
&
)
N
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(b) The partial density of saturated working fluid vapor

ﬁ:i'\'ﬁ h ]

is a function, Sa, of local temperature.

et
CONTS
)
]

o = Sal(T) (I1.10)

v,
5

v,

¥ r

N

3 (c) The working fluid heat of vaporization is a function,

v
’

Y % .\ L

Hfg’ of local temperature.

PR )
O
PR N
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L
".l »

hfg = Hfg(T) (IT.11)

P
Qg "“
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In summary, the eleven equations which are stated in this

e
.
'

,
v
(A

chapter form the foundation for the analysis of a vertically

oriented, variable conductance heat pipe. The remaining
chapters derive a numerical model and iteration scheme based e

on the eleven equations from this chapter.
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III. NUMERICAL MODEL FORMULATION

A. VARIABLE ELIMINATION

The system of eleven equations can ultimately be reduced
to a system of three equations by eliminating variables.
Equation (II.9) is eliminated by using the equation of state,
Fa(T), for Pa. The partial density of the saturated working

fluid vapor, p_. (Equation II.10) is eliminated by using Sa(T).

a

Hfg(T), Equation (II.1ll1), is used to eliminate h The non-

fg”’
condensible gas pressure, Py is eliminated by using the perfect
gas equation of state (Equation II.l1). The treatment of workiig
fluid vapor and noncondensible gas as thermodynamically inde-
pendent substances gives total pressure as the sum of partial
pressures and total density as the sum of partial densities.
Total pressure is eliminated by using the sum bf partial pres-
sures, Equation (II.3). The noncondensible gas density is
eliminated by solving Equation (II.2) for oy and replacing oy
with p =P, The definition for mass fraction of the working
fluid vapor, Equation (II.4), is used to replace total density.

After making the preceding seven substitutions, four equa-
tions with four unknowns are left. The four remaining depen-
dent variables which are functions of axial position are:

(a) m

working fluid condensation flux [lbm/ft2 sec]

al

o '/ <]

(b) V, velocity of the mixture [ft/sec]

oy

(c) w working fluid mass fraction [0 < wy < 1]

al

(d) T, temperature [°R].
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The four remaining equations are:

* Pv d ,Sa
(a) ma A: + ax J; V) = 0 (I1I.1)
. P dw
v d d ,SaD a _
(b) a E + a—;(Sa V) - &-(_(E; -a;) = 0 (ITI.2)
dFa d 1 R
(c) == + z=(Sa(—=-1) — T)
dx dx Wy Mb
P m P
Sa d ,5a ,,2 \4 a v 8u
= (=—=g) = 3=(= V") = —V—==-— "V (I1I1.3)
Wy dx Wy Ac Wy Ac DV
2 P H_ P .
d°T _ s - fg v -
(d) 3 %A h(T Too) + KA ma = 0 (I11.4)
dx P P

Furthermore, Equation (III.l) can be eliminated by solving this

equation for working fluid condensation flux, m, . and substi-
tuting that into the three remaining equations.
The resulting three equations with dependent variables of

velocity, working fluid mass fraction, and temperature are:

dw
d  Sa d d ,Sa a _
(a) ~dax g V) + a;(Sa v) - &-(&: DTX_) = 0 (ITI.5)
dFa d 1 R
a b
P_8u
Sa d ,Sa .2 v d ,Sa v
= (22 g)- =(2 V) + L (22 Vv)- —— V (I1I1.6)
Wy dx wa wy dx Wy ACDV
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This set of three equations and three unknowns describe the e

operation of a vertically oriented, gas loaded, variable conduc-

tance heat pipe. ::E:_

) ‘.
2 B. BOUNDARY CONDITIONS i
These equations describe the thermodynamics of the heat !&4

pipe condenser. The independent variable, the distance along e

the heat pipe, is measured with the origin at the condenser

% end farthest from the evaporator. The total condenser length
. is defined as L. Based on the system of three equations, two
boundary conditions are required for temperature and mass frac-
tion and one boundary condition is required for velocity.

From experimental data, the temperature at the far end of
3 the condenser and in the evaporator are known. The boundary

conditions for the dependent variable of temperature are:

- when x = 0, T = Tc’ where Tc equals the temperature at the
) far end“of the condenser.
when x = L, T = Te’ where T equals the temperature at

the end of the condenser closest to
the evaporator.

The highest velocity of the working fluid vapor is reached
in the evaporator exit. This velocity can be calculated from

the known heat input to the heat pipe. The vapor velocity in

the evaporator, Ve' is equal to the heat transfer rate into
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the evaporator divided by the product of local density of the N
..A“.’,

3 . ‘.

working fluid vapor, cross sectional area of the vapor space, -
and the local heat of vaporization of the working fluid. Due '31
sl

. to the physical boundary at the end of the pipe, where x = 0, &ﬁ
the velocity at the farthest end of the condenser away from the ',;
evaporator is equal to zero. The boundary conditions for the +oIn
&

mv

dependent variable of velocity are: Y
.*{.;

when x =0, V= 0.0 and !‘f
;'\-:::

Qe T

= = = _-— Y

when x L, V Vo o, Achf . P

e ge "‘w‘

Y

Based on the system of three equations, only one of the above ;fi
R

boundary conditions is required. The boundary condition at the &;f
origin is used for the iteration scheme and V_ is used to ,;*
normalize velocity. - :%S
S

The temperature and pressure at the farthest end of the ﬁf?

-.‘.\‘

condenser from the evaporator are known from laboratory data. Ry
Assuming thermodynamically independent substances, the total ?:i
pressure is the sum of partial pressures and the total density Cfﬁ
is the sum of partial densities. The saturation pressure of ?%5
TN

the working fluid vapor, P could be determined from tabulated ﬂi.
e

data by entering the saturation pressure table with condenser :i?
temperature. An example of this table can be found in Eubank e
[Ref. 8] for methanol saturated vapor. The noncondensible gas Nt
<o

pressure, P, can be calculated by subtracting the working fﬁ

29
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fluid vapor pressure from the total pressure.

With this data,

the initial mass fractions can be established by using the

following procedure from Reynolds and Perkins [Ref. 6]:

b

< working fluid vapor

when x 0, w_ =

a

when x L, w, =

B Pt Tt S g L Tt T

so that at this point Wy

= Lbm for species 'a'’
Lbmole mixture P

Lbm
Lbmole mixture

for species 'b'

XaMa
XaMa +Xbe

XpMp
xaMa +Xbe

At the end of the condenser closest to the evaporator, it is

assumed that the concentration of noncondensible gas is zero

is equal to one. The boundary condi-

tions for the dependent variable of mass fraction for the

are:
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i C. EQUATION NONDIMENSIONALIZATION RN
b D)
»
To generalize the equations and facilitate their solution Wy
3 it is convenient to use dimensionless variables defined as H'F:
b w )=
g follows. N
p »
i (a) The independent variable, condenser length, is defined N,
! by: o
:
: n o= f 27
i S
' where x is the distance along the heat pipe, measured from ‘Pi
. the condenser end farthest from the evaporator, and L is the fj'.;j
total condenser length.
(b) A dimensionless temperature can be defined by: X
T -T, o
8 = e
T -T, -
where T is the local temperature, Te is the evaporator tempera- :-Z:f:'
ture, and T is the ambient temperature. 1In this analysis, the :_:_:':
first and second derivative of temperature with respect to dis- ey
tance are required. ‘,
i:Z;I:Z
ar _ dr de dn _ le “Tedo L
dx dg dn dx L dn >
Win
- -
d’r _ g ar, _ g feTododn 3
2 - dx'dx dn L dn’dx )
dx C}.“
T -T .2 oo
_ e "o d°g \
L2 dn r
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(c) The second dependent variable, working fluid mass
fraction, is dimensionless by definition and its numerical
value is greater than or equal to zero and less than or equal
to one. The first derivative of working fluid mass fraction
with respect to distance is:

dw
a

dn °

——— = — — = l
L

(d) Velocity of the working fluid vapor is made dimension-
less by normalizing local vapor velocity with the evaporator
vapor velocity, Ve' The nondimensional velocity and the first
derivative of velocity with respect to distance are then

defined by:

\4
* =
vl o= g
e
v . v avt an _ Ve avx
dx dv* dn dx L dn °

(e) In order to complete nondimensionalizing process, the
following other dimensionless variables are used.
(i) The working fluid vapor density is normalized with

respect to the evaporator vapor density.

Sa
Sa
e

Sa* =
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(ii) The working fluid vapor pressure is compared :ya

O,

to the evaporator vapor pressure. i

e
Fa* = Ea_'_ A
Fa

(iii) The working fluid heat of vaporization is normalized
with respect to the condenser working fluid vapor heat of

condensation.

H*
. fg Hfg,c

(iv) The working fluid vapor viscosity is normalized

Y

with respect to the evaporator vapor viscosity.

After substitution of nondimensional terms, the three
equations which describe operation of a vertical variable

conductance heat pipe become:

dw
a xuxy _ D (4 Sa* a _
) +aﬁ(Sa V*) LVe(aﬁ o, dn) = 0 (I11.8) -

d ,Sa*.y*
(a) CF]- T

The dimensionless coefficient from Equation (III.8) is o
D

(9%
Nl = —o. s
LVe

I\ .
33 '

ettt ta e mL g ety e ey - ..
A AN AP G T B A A

L




«

e %Ge
o

L

o
S A

L' s S

et

Yy

Fa * R(T_-T_) T,
(b) 2 dg: + —= 0 (G- (sa* (= =1) (0 +7—m))
Saeve Mbve a e »
2
Lg Sa* d ,Sa*y* d ,Sa*v*
= - EY) b ovr )
;é' Wy dn W dn wy
PV Bue L
u* v* (111.9)

T A_D. Ssa_Vv
C v e e

The dimensionless coefficients from Equation (III1.9) are

Fa R(T -T_) T
e e o)

N2 = ’ N3 = ' N4 = _io_
sa v2 M V2 Te~Ts'
e e b e
P 8u_ L
= Lg = €
N5 \—7-2', and N6 A D Sa V .
c vite e
e
2 P hL2 H A Sa_ V_L
(c) da”8 _ s 0 fg,c"c e €& ua
dn2 K A~ K Ap(Té -T,) fg
d ,Sa*vy* _
x an o ) = 0 (II1.10)

The two nondimensional terms of interest from Equation (III.1l0)

are

_— Ps hL and N8 = Hfg,c Ac Sae Ve L
K A KA (T -~T.) :
p E e ®

Numerical evaluation of the dimensionless coefficients is

required to determine the relative significance of each term.
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Two experimental runs from Batts [Ref. 4] are used to evalu-

ate the dimensionless coefficients. A low powered run

(Q = 22.9 watts) with methanol as the working fluid, and krypton
as the noncondensible gas, is chosen. This run demonstrates

an example of the heavier molecular weight noncondensible gas
diffusing through a large portion of the condenser. A second
higher powered run (Q = 70 watts) with methanol as the working
fluid, and helium as the noncondensible gas, is chosen because
it demonstrates an example of the lighter molecular weight
noncondensible gas occupying a small portion of the condenser.

The convection heat transfer coefficient for the heat pipe is

set equal to 1.0 R representing free convection. A
hr.ft. °R
system thermal conductivity of approximately 4.56 Btuz
hr.ft.”°R

results from a parallel circuit combination of conductive
thermal resistances for the stainless steel pipe wall and
methanol filled stainless steel wire mesh wick. Kane [Ref. 5]
calculated representative binary mass diffusion coefficients
of 0.4 ftz/hr for krypton-methanol and 1.9 ftz/hr for helium-

methanol. These values for binary mass diffusion are also

used in this analysis. The experimental values that are used
to calculate the dimensionless constants are listed in Table
I. The values of the dimensionless constants for the two RSN
experimental runs are listed in Table II. fﬁ‘

Based on the tabulated numerical results, Equation (III.9)

"
bl

e a0

is modified to:

o e
& %

p "

b
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.
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NUMERICAL DATA

Constants for both runs:

R = 1545.33 ft Lbf/Lbmole °R

g = 32.2 ft/sec2

L = 3.5 ft

.0199 ft2

g
it

.001917 f£t2

=
]

.15917 ft

=)
|

P_= .524 ft

.500 ft

ael
|

h = 1.0 Btu/hr £ft2°R

K = 4.5585 Btu/hr ft°R

Low powered krypton/methanol

Q = 22.9 watts = 78.1348 Btu/hr

592°R

-
1

543°R

3
i

3
I

536°R
2
D =20.4 £t"/hr

M, = 83.8 Lbm/Lbmole

Tt v e e e e e

I T B

DR AT AT I S .
o VIR, YL AN "

...........

Gas constant
Acceleration of gravity
Length of condenser

Cross sectional area of
vapor space

Axial cross sectional area
of wick-wall combination

Diameter of vapor space

Periphery of outside of
pipe

Periphery of vapor space

Convection heat transfer
coefficient

Thermal conductivity

...........
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TABLE I (CONTINUED)

2€

Ve = .041339 ft/sec

<,
s
]
)

o~ f"
]
r
N )

2]
o]
]

2y

’
L]
3
3

10.24 Lbf/in?

g

-
)
.\

’..

‘o

v
»

H g = 500.21 Btu/Lbm
sa_ = 0.054871 Lbm/ft>

Mg = 224.502 x10"2 Lbf sec/ft?

High powered helium/methanol

Q = 70 watts = 238.84 Btu/hr

T_ = 640°R
e
T = 540°R
C
T_ = 536°R

D =1.9 ft%/hr

=
I

4.003 Lbm/Lbmole

<
n

e .050485 ft/sec

Fa_ = 28.52 Lbf/in?

Hfg,c = 501.11 Btu/Lbm

sa_ = 0.14446 Lbm/ £t

b, = 243.993 «1072 Lbf sec/ft? e

'y
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§ TABLE II Fx
2 DIMENSIONLESS CONSTANTS ;;
Q Low Powered Krypton/Methanol High Powered Helium/Methanol ::'::
L o
: D 4 D 3 i
Nl = 35— = 7.679 x10 Nl = y5— = 2.9869 x10 EE;
e e s
2 = Fle 6 P . 350.16 6 :
N2 = ———— = 506.355x10 N2 = ———— .166 x10 :
Sa_ Vv Sa Vv 3
e e'e 5
R(T_-T,) 6 R(T-T,) 6 2
N3 = ———— = 19.4581 x10 N3 = —=—— = 507.224 x10 o
MV MV -
b e b e g
’.‘J
T, T, i
N4 = F—p— = 9.571 N4 = F—F = 5.154 S
e © e o -
NS = L9 = 65948.4 N5 = 29 - 44218.0 <3
2 v2 )
\ \Y o
e e e
2
3 P 8u L P_8yu_ L o
3 N = L & = 14.086 N6 = v__¢€ = 4.76143 )
’ Ac Dv Sae Ve Ac DV Sae Ve :: -
|
- P hi? P hL? -
N7 = —R-A—— = 734.553 N7 = ——I-(T— = 734.553
: P P
X 6 = Hﬁch A, sa_ VL ve - Hfg,c A, Sag VL

KA (T ,T,) KA (TT,)

= 581.362 = 1008.30
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(I11.11)
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The viscous term and the two inertia terms are neglected be- 5;
cause their order of magnitude is 101 compared to 103 and 106 Eii
for the remaining terms. The nondimensional equations (II1I.8), !E;
(II1.10), and (III.1ll) are used to develop the analytical model S
of the vertically oriented, variable conductance heat pipe. Ei;

>

D. FORMULATION OF THE NUMERICAL MODEL -
Equation (III1.8) is integrated and is solved for the first

derivative of the working fluid mass fraction. Integrating

both sides of Egquation (III.8) gives: o
dw i;?
L AVA ] * W,
- SaTVE | gaxyx - y1 S35 2 - ¢ (III.12)
W dn -
a a -
The lower endpoint is used (n = 0) to evaluate the constant

of integration. When n = 0, V* at the end of the pipe equals

zero. The constant of integration then becomes: B

oo dma

C = -N1 's—a:—dT (III13) Gt

0

By replacing the value for the constant of integration and

LR IC RN

solving for dma/dn, the final version of Equation (III.l2) is:
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*
dw_ _ vk Vi . wy Py dwa (111.14)
dn N1 N1l Sa* Sae dn * y

0

The derivative in Equation (III.ll) is expanded to get the

following.

d 1
aﬁ(Sa*(a;-—l)(e +N4))

dw
_ dSa* 1 _ « —1 a
= dn ((L)—— 1)(5 +N4) + Sa - d—n(e +N4)
a w
a
1 ds
+ Sa*(a—--l) an (III1.15)
a
*
The chain rule is applied to dgi .
T

dsa* _ dsa* dsa dT db e Tw dsa de

dn = dSa dT 46 dn ( Sa, )T an (I11.16)
. dFa* .
Applying the same procedure to 3n ! the result is:
dFa* _ (Te w) dFa dé (ITI.17)
dn Fa dT dn ° )
By combining terms and solving for %%, the final form for
equation (III.1l1l) is:
40
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(a) The coefficient of %% is set egual to G(wa,e).

- Fa dT Sa dT ‘w
e e a
+ N3(Sa*)(a£--l) . (III.18)
a
. de .
(b) Solving for an’ the result is
dé _ (N5Sa* , N3sa® dwa<e +N4)1/G(w_,0) (III.19)
dan w, 2 dn War .
a

Equation (III.10) is integrated and the result is:

n
de _ _ « Sar*v*
an ~V7 0] 6dn - N8 HE i C . (II1.20)

Using the boundary condition of n 0 where V* = 0.0, the

constant of integration is:

C = == . (I11.21)

The final version of Equation (III.10) which is solved for V¥*

is:

_,de _. de
VE o= (Fr U, N7 (fedn)w, -w, an 0)/(N8u§95a*) . (1I1.22)
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The final system of three equations with nondimensional

variables is:

g . dw, o,
; (a) Equation (III.1l4), dn(v*’wa'TiT 0):
R
. *
y dwa oy . Y Wy N Wy, Pp dwa
L} - x
: dn N1 N1 SQ Sae dn 0
= . dse dwa
. (b) Equation (III.1l9), aﬁ(wale’TET);
y de _ (NSsa* K N3sa* d“’a(em,;)]/c(w 8)
2 dn w 2 dn a’
a w
i a
- where
. Glw_,8) = N2(Te ") ara + W3 Te™Te) asa L _1) (e+n9)
. a’ Fa daT Sa dT ‘w ;
., e e a
* 1
+ N3(Sa )(w—- -1)
» a
N
) n de de
- ) 6
- * = =Y
(c) Equation (III.22), V (wa,of edn,dn,dnlo)
' de de T
* = g° - - 2 * * e
3 \ (dn W, N7(f6dn)wa W, dn,o)/(NBHfgsa ) . )
- : "’
‘ A \.:_-;:
The boundary conditions for this set of equations are the :{b
following:
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{(a) For nondimensional temperature:

T, =T,

n = 0.0 8 = e =
Te -To° c

n = 1.0 g = 1.0

a6 -

dn = ¢

The constant o is not known but, based on laboratory data, can
be estimated and through an iteration process the correct value
can be obtained. A proposed iteration scheme is presented in
Chapter 1IV.

(b) For working fluid vapor mass fraction:

.

n = 0.0 wy, = mao
n = 1.0 wy = 1.0
dwa

———— - 8

dn 0

The constant B is not known, but can also be estimated for an
initial value and, through an iteration scheme, a correct value
can be obtained.

(c) For working fluid vapor dimensionless velocity:

n = 0.0 v* = 0.0
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E. AUXILIARY EQUATIONS

A means to derive saturated working fluid heat of vapori-
zation, density, and pressure is required before a numerical
solution is attempted. Using methanol as the working fluid and
data from Eubank [(Ref. 8] for saturation conditions, the
following functions are derived.

1. Polynomial for the Working Fluid Heat of Vaporization

Tabulated values of the heat of vaporization for methanol
are plotted on Figure 3.1 with a solid line. A Fortran program,
polyfit, is used to obtain the coefficients of the following

polynomial:

He () = aT® + bT + ¢ (III.23)

where a = -9.96 x10™4

Btu/Lbm(°R)2, b = .730 Btu/Lbm(°R), and
c = 397.99 Btu/Lbm. The values of Hfg(T) using this polynomial
are plotted on Figure 3.1 with a dotted line.

2. Polynomial for the Working Fluid Vapor Saturation
Density

Tabulated values for methanol saturated density are
plotted on Figure 3.2 with a solid line. Again the Fortran

program, polyfit, is used with the following modification:

*
T* where T = 500°R and § = eT )
ref e
ref A
‘s oM
A polynomial in the variable £ is used to describe the : Sﬁi
~w

saturation density. AN
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The polynomial, Sa(f{), is then:
_ 3 2
Sa(£) = af” + b + c£ + 4 (I1I.24)

where a = .1293 me/ft3, b = ~1.0475 me/ft3, and
c = 2.8868 me/ft3 and d = -2.7037 me/ft3. The value of

dsa/dT is also required for the numerical solution. This is:

dSa

_ 3 2
I = (3ag> + 2bg< + cE) /T,

of (I11.25)

3. Polynomial for the Working Fluid Vapor Saturation
Pressure

Tabulated values for methanol saturation pressure are
plotted on Figure 3.3 with a solid line. Polyfit is used with
the same modification.

The polynomial Fa(f) is:
3 2
Fa(§) = a§” + bE™ 4+ c¢ + d

where a = 24,5994 Lbf/inz, b = -191.2472 Lbf/inz,
c = 498.4940 Lbf/inz, and d = -439.9883 Lbf/inz. The first
derivative of Fa(f) with respect to temperature is equal

to:

(Gac3 + 2bE% + CEV/T_ . - (III.26)
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IV. DISCUSSION AND RECOMMENDATIONS

A, DISCUSSION

The final version of the model for a variable conductance
heat pipe with a vertical orientation is a system of three
ordinary, non-linear, coupled, differential equations. These
three equations are (III.14), (III.19), and (II1.22).

The remaining challenge for the numerical model is to pro-
pose an iteration scheme that can solve this system of three equa-
tions. A special thank you goes to the collaboration of Dr. M.D.
Kelleher and Dr. K.T. Yang for the following iteration technique.

The steps of the iteration procedure are as follows:

(a) To start the iteration process, assume a form for the

relationship between 8 and wy such that wy = c;6 +C This

¢
linear relationship is reasonable because:

(i)_ When n

0, both Wy and 98 are values close to

zZero.

]

(ii) When n L both Wy and 6 are equal to 1.0.
(1ii) This step is required for the first iteration
only.

The equations for this step are then:

= + Iv.
wy C,8 + C, (IV.1)
dw
a de
= C _— . Iv.2
== 1 an ( )
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do

Then, using Equation (III.19), solve for ane This establishes
a first degree equation, Qﬂ' in terms of 6 only which can then

dn
be integrated numerically to establish a first iteration

relationship for 6 (n).

de
dn

(a) above, Equation (III.22) can be solved for V*,

(b) With this relationship for 6 and defined from step

(c) Once step (b) is completed, Equation (III.14) can be
solved for dwa/dn. The integral of dwa/dn is then used to
define W, The process can then be repeated.

In summary, the first iteration goes through steps a-c
and the remaining iterations go through steps b-c until there
are no further changes in the form of §, Wy s and v*., 1In
theory, the outcome of this numerical iteration is a table
which gives dimensionless temperature, 6; velocity, V*; and
mass fraction of the working fluid vapor, Wy versus non-

dimensional condenser length, n.

B. RECOMMENDATIONS

1. This numerical analysis was written to yield results via
a computer program. The Continuous System Modeling
Program III [Ref. 9] is a computer package that could
be used to solve the system of equations. The CSMP
[Ref. 9] includes a powerful integral statement which
carries out a Fourth Order Runge-Kutta Method.

2. This model assumes constant values for the binary mass
diffusion coefficient and the convection heat transfer
coefficient. Once numerical values are obtained from
the iteration scheme, the accuracy can be improved by
using analytical expressions instead of constants for
the binary mass diffusion coefficient [Ref. 10] and the
convection heat transfer coefficient [Ref. 11].

3. An attempt could be made to model the variable conduc-

tance heat pipe that is not in a vertical orientation.
Kelleher [Ref. 3] shows that a stratification of the
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working fluid and noncondensible gas occurs when the
heat pipe is in the horizontal position. This position
makes the transport processes inside the pipe three
dimensional, which would require a finite difference
computer model for solution.
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